MMS-15X

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From CY 2020 to AY 2020 - CY 2021]

First Year

ALGEBRA

Time: 3 Hours

Maximum Marks: 70

PART - A

(5 x 5 = 25 Marks)

Answer any FIVE questions out of Eight Questions in 300 words

- 1. If H is a nonempty finite subset of a group G and H is closed under multiplication, then show that H is a subgroup of G.
- 2. State and prove the division algorithm for polynomial rings.
- 3. If $u, v \in V$, then show that $|u, v| \le ||u|| ||v||$.
- 4. Let *G* be a group of automorphisms of a field *K*. Show that the fixed field of *G* is a subgroup of *K*.
- 5. If $T \in A(V)$ is nilpotent, then $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$ where $\alpha_i \in F$ is invertible if $\alpha_0 \neq 0$.
- 6. If *G* is a finite group and $a \in G$, then show that O(a)|O(G).
- 7. State and prove the Gauss lemma.
- 8. If H and K are finite subgroup of G of orders o(H) and o(K), respectively, then show that

$$o(HK) = \frac{o(H) \ o(K)}{o(H \cap K)}$$

PART - B

Answer any THREE questions out of Five Questions in 1000 words

- 9. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Show that R is a field.
- 10. If V is finite-dimensional vector space and if W is a subspace of V, then show that W is finite dimensional and dim $V/W = \dim V \dim W$.
- 11. If *F* is of characteristic 0 and if *a*, *b* are algebraic over *F*, then show that there exists an element $c \in (a, b)$ such that F(c) = F(a, b).
- 12. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then T satisfies a polynomial of degree n over F.
- 13. If p is a prime number and p|(G), then show that G has an element of order p.

MMS-15

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHAMETICS

[From AY 2003 to AY 2019]

First Year

ALGEBRA

Time: 3 Hours

Maximum Marks: 75

PART - A (3 x 5 = 15 Marks)

Answer any THREE questions out of Five Questions in 300 words.

- 1. State and prove Lagrange's theorem.
- 2. Prove that HK is a subgroup of G iff HK = KH.
- 3. Prove that a subgroup H of a group G is normal in G iff $g^{-1}hg \in$ H for all $h \in H$, $g \in G$.
- 4. Prove that a non zero finite integral domain is a field.
- 5. In any vector space V (F), the following results hold:
 - $(i) \quad o.x = 0$
 - (ii) $\alpha . 0 = 0$
 - (iii) (- α) x = (α x) = α (-x)
 - (iv) $(\alpha \beta) = \alpha x \beta x, \ \alpha, \beta \in F, x \in V$

PART - B

(4 x 15 = 60 Marks)

Answer any FOUR questions out of Seven Questions in 1000 words.

- 6. A) Prove that a subgroup H of a group G is normal subgroup of G if product of two right cossets of H in G is again a right cosset of H in G.
 - B) State and prove Sylow's First Theorem.
- 7. State and prove Fundamental theorem of group homomorphism.
- 8. A) Prove that a commutative ring R is an integral domain iff for all a,b,c \in R (a $\neq 0$) ab = ac \implies b=c.
 - B) Prove that the general polynomial of degree $n \ge 5$ is not solvable by radicals.

- 9. Prove that if R is an integral domain with unity in which every non-zero, non unit element is a finite product of irreducible elements and every irreducible element is prime, then R is a UFD.
- 10. Let R be a commutative ring with unity. Then prove that an ideal M of R is maximal ideal of R iff R/M is a field.
- 11. A) If V is finite-dimensional and if W is a subspace of V, then W is finite-dimensional, dim W \leq dim V and dim V / W = dim V -dim W.

B) Let V and W be two vetor spaces (over F) of dim m and n respectively. Then prove that Hom (V, W) has dim mn.

12. A) If V is finite-dimensional over F then prove that $T \in A(V)$ if and only if the constant term of the minimal polynomial for T is not 0.

B) If V is n-dimenstional over F and if $T \in A(V)$ has all its characteristic roots in F then prove that T satisfies a polynomial of degree "n" over F.

SUBJECT CODE: MMS-16X

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From CY 2020 to AY 2020 - CY 2021]

First Year

REAL ANALYSIS

Time: 3 Hours

Maximum Marks: 70

 $(5 \times 5 = 25 \text{ Marks})$

PART - A

Answer any FIVE questions out of Eight Questions in 300 words

- 1. Show that any compact subset of a metric space is closed.
- 2. If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then show that f(X) is connected.
- 3. Let f be areal differentiable function on [a, b] and let $f'(a) < \lambda < f'(b)$. Show that there is a point $x \in (a, b)$ such that $f'(x) = \gamma$.
- 4. If x > 0 and y > 0, then show that

$$\int_{0}^{1} \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

- 5. Show that a linear operator *A* on a finite-dimensional vector space *X* is one-toone if and only if the range of *A* is all of *X*.
- 6. Let $\{s_n\}, \{t_n\}$ be complex sequences and let $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$ Show that

$$\lim_{n\to\infty}(s_n+t_n)=s+t.$$

7. Show that $f \in R(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exists a partition *P* such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon.$$

8. Show that a subset *E* of real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$ and x < z < y, then $z \in E$.

PART - B

Answer any THREE questions out of Five Questions in 1000 words

- 9. A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(V)$ isopen in X for every open set V in Y.
- 10. State and prove the Stone-Weierstrass theorem.
- 11. If X is a complete metric space, and if ϕ is a contraction of X, then show that there exists one and only one $x \in X$ such that $\phi(x) = x$.
- 12. State and prove the root test.
- 13. Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous.

SUBJECT CODE: MMS-16 / PGDMAT-12

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From AY 2003 to AY 2019]

First Year

REAL ANALYSIS

Time: 3 Hours

Maximum Marks: 75

PART - A

(3 x 5 = 15 Marks)

Answer any THREE questions out of Five Questions in 300 words.

- 1. In the Euclidian space prove that the following are true
 - a) $|x| \ge 0$
 - b) |x| = 0 iff x = 0
 - c) $|\alpha x| = |\alpha| |x|$
 - d) $|xy| \le |x| |y|$
 - e) $|x+y| \le |x|+|y|$
 - f) $|x-z| \le |x-y|+|y-z|$
- 2. Prove that countable union of countable set is countable
- 3. Prove that composition of two continuous function is continuous
- 4. State and prove the fundamental theorem of calculus
- 5. If $f_1 \in R(\alpha) ON(a,b)$ and $f_2 \in R(\alpha) on[a,b]$ and $f_1 \ge f_2 on[a,b]$ then prove that $\int_a^b f_1(x) dx \le \int_a^b f_2(x) dx$.

Answer any FOUR questions out of Seven Questions in 1000 words.

- 6. State and prove Merten's theorem
- 7. Suppose $\{S_n\}, \{p_n\}, \{t_n\}, are complex sequences and <math>\lim_{n \to \infty} s_n = s$ and $\lim_{n \to \infty} t_n = t$. Prove the following

$$\lim_{n \to \infty} s_n + t_n = s + t$$

$$\lim_{n \to \infty} cs_n = cs$$

$$\lim_{n \to \infty} s_n t_n = st$$

$$\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s} \text{ Provided } S_{n \neq 0} \text{ and } S_{\neq 0}$$

- 8. A) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that "f" is uniformly continuous
 - B) Prove that continuous image of connected set is connected

9. Suppose f and g are defined on (a,b) and are differentiable at a point $x \in (a,b)$. Then prove that a) (f+g)'(X) = f'(X) + g'(X)b) (fg)'(x) = f'(X)g(X) + f(X)g'(X)

c)
$$(f/g)^1(x) = \frac{g(x)f^1(x) - f(x)g^1(x)}{g^2(x)}$$

 (A) State and prove weiestrass M – test for uniform convergence of series of functions

B) Prove that A sequence of functions $\{f_n\}$ converges to f with respect to C(X)

IF $F_n \rightarrow f$ uniforms on x.

- 11. A) Show that differentiable functions are continuous
 - B) State and prove the root test
- 12. With usual notation prove the following
 - A) E (z + x) = E ((z) (w)) where z and w are complex
 - B) E (Z₀. E (-Z)= 1
 - C) E '(z) = e (z)
 - D) E (nz) = e(z)n

SUBJECT CODE: MMS-17

P.G. DEGREE EXAMINATION – JANUARY 2022 MATHEMATICS

[From AY 2003 to AY 2019]

First Year

COMPLEX ANALYSIS AND NUMERICAL ANALYSIS

Time: 3 Hours

Maximum Marks: 75

PART - A (3 x 5 = 15 Marks)

Answer any THREE questions out of Five Questions in 300 words.

1. Find the singularities of the function $\frac{\cot \pi z}{(z-a)^3}$.

- 2. Using residue theorem, evaluate $\int_{C} \frac{z^2 + 1}{(z-1)(z-2)} dz$ where C is |z| = 3.
- 3. Define conformal mapping. If $\omega = x + \frac{iby}{a}$, 0 < a < b, prove that the inside of the

circle $x^2 + y^2 = a^2$ corresponds to the inside of an ellipse in the ω – *plane*. Is the transformation conformal?

4. Using Lagrange's formula of interpolation find y(0.9) given

x	7	8	9	10
У	3	1	1	9

5. Solve $\frac{dy}{dx} = x + y$ given y(0) = 1. Obtain the value of y(0.1) using Picard's method.

Answer any FOUR questions out of Seven Questions in 1000 words.

- 6. State and prove Rouchy's theorem.
- 7. Discuss the transformation $\omega = \sin z$.
- 8. Find an iterative formula to find the reciprocal of a number N using Newton's method and hence find the value of $\frac{1}{19}$.

PG-C-841

9. Apply Gauss Jordan method to find the solution of the following system:

10x + y + z = 122x + 10y + z = 13x + y + 5z = 7

- 10. Evaluate the integral $\int_{4}^{5.2} \log_{e} x \, dx$ using Trapezoidal rule and Simpson's rules.
- 11. Find the value of $\cos(1.74)$ from the following table:

x	1.7	1.74	1.78	1.82	1.86
$\sin x$	0.9916	0.9857	0.9781	0.9691	0.9584

12. Determine the value of y(0.4) using Milne's method given $\frac{dy}{dx} = xy + y^2$, y(0) = 1

Use Taylor series to get the values of y(0.1), y(0.2) and y(0.3).

SUBJECT CODE: MMS-17X

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From CY 2020 to AY 2020 - CY 2021]

First Year

COMPLEX ANALYSIS AND NUMERICAL METHODS

Time: 3 Hours

Maximum Marks: 70

PART - A

(5 x 5 = 25 Marks)

Answer any FIVE questions out of Eight Questions in 300 words

1. If f(z) is a regular function z. Prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$$

2. Evaluate $\int_C \frac{z}{(9-z^2)(z+i)} dz$, where *C* is the circle |z| = 2 de

scribes in positive sense.

- 3. Find a positive root of $xe^x = 2$ by the method of False position.
- 4. Using the following data, determine by Lagrange's interpolation formula the percentage of criminals under 35 years.

Age (under years)	:	25	30	40	50
% Number of criminals	:	52.0	67.3	84.1	94.4

- 5. Using Taylor's series method, find the value of y(0.2) given that $\frac{dy}{dx} = 1 2xy$, and y(0) = 0.
- 6. Find the bilinear transformation which maps z = 1, i, -1 onto w = i, 0, -i respectively.
- 7. Expand $f(z) = \frac{z+3}{z(z^2-z-2)}$ in powers of z, where (i) |z| < 1, (ii) 1 < |z| < 2.
- 8. State and prove the necessary condition for f(z) to be analytic.

PART - B

Answer any THREE questions out of Five Questions in 1000 words

- 9. State and prove the Taylor's theorem.
- 10. Solve the following system of equations by Gauss Seidel method.

28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35

11. The population of a town is as follows.

Year :	1941	1951	1961	1971	1981 1991
Population in lakhs :	20	24	29	36	46 51

Using Newton's interpolation, estimate the population increase during the period 1946 to 1976.

12. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 - x^2}$ given y(0) = 1 at x = 0.2.

13. Discuss the transformation w=sin z.

Subject Code:

MMS-18

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From AY 2003 to AY 2019]

First Year

MATHEMATICAL STATISTICS

Time: 3 Hours

Maximum Marks: 75

PART - A $(3 \times 5 = 15 \text{ Marks})$

Answer any THREE questions out of Five Questions in 300 words.

- 1. Define Binomial distribution and find its mean and variance.
- 2. State weak Law of large numbers.
- 3. Show that the sample mean \overline{x} is an unbiased estimator of $\frac{1}{\alpha}$ for the distribution

 $f(x,\theta) = \theta(1-\theta)^{x-1}$ $x = 1,2,...,0 < \theta < 1.$

- A coin is tossed 6 times . The Null hypothesis H₀ :p=0.5 is rejected if 5 or more trails result in heads. Obtain the power of this test if H₀ :p=0.5 is tested against H₁:p≠0.5 where p denotes probability of getting a head in any trial.
- 5. Independent random samples of sizes 20 and 25 taken from $N(\mu_1 : \sigma_1 = 3)$ and $N(\mu_2 : \sigma_2 = 4)$ have means 50 and 45 respectively. Construct a 90% confidence Interval for $2(\mu_1 \mu_2)$.

PART - B (4 x 15 = 60 Marks)

Answer any FOUR questions out of Seven Questions in 1000 words.

- 6. State and Prove Tchebychev's inequality.
- Find the Moment generating function of Normal distribution and hence find its mean and variance.
- 8. Two stochastic variables X and Y take the values 1,2,3 and their probabilities are as follows

Y X	1	2	3
1	0.1	0.1	0.1
2	0.1	0.2	0.1
3	0.1	0.1	0.1

Find E(X),E(Y),Var(X),Var(Y),E(XY),E(X+Y)and Cov(X,Y).

- 9. Show that the sample variance is a consistent estimator for the population Variance of a normal distribution.
- 10. State and Prove Central limit theorem
- 11. State and Neyman Pearson Lemma.
- 12. State and prove Rao Cramer inequality.

P.G. DEGREE EXAMINATION – JANUARY 2022

MATHEMATICS

[From CY 2020 to AY 2020 - CY 2021]

First Year MATHEMATICAL STATISTICS

Time: 3 Hours

PART - A

 $(5 \ge 5 = 25 \text{ Marks})$

Maximum Marks: 70

Answer any FIVE questions out of Eight Questions in 300 words

1. Given the pdf of a continuous random variable *X* as follows $f(x) = \begin{cases} kx(1-x) & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$

otherwise Find *k* and the cumulative distribution function.

- 2. State the properties of t-distribution.
- 3. Find the MGF of the Poisson distribution and hence obtain its mean and variance.
- Given that $f(x,\theta) = (1+\theta)x^{\theta}, \theta > 0, 0 \le x < 1$. If the hypothesis $H_0: \theta = 2$ is to 4. be tested by a single observation on X using the critical region $X \leq 0.25$. (i) Find α , (ii) If $H_1: \theta = 3$ find β .
- 5. In a sample of 500 people in Kerala are tea drinkers and the rest are coffee drinkers. Can we assume that both coffee and tea are equally popular in the state at 5% level of significance?
- 6. Show that limiting form of *t*-distribution is normal distribution.
- 7. Briefly explain about the characteristics of estimators.
- 8. Let $X_1, X_2, ..., X_n$ be a random sample from a population with p.d.f. $f(x,\theta) = \theta x^{\theta-1}; 0 < x < 1, \theta > 0.$ Show that $t_1 = \prod_{i=1}^n X_i$, is sufficient for θ .

PART - B (3 x 15 = 45 Marks)

Answer any THREE questions out of Five Questions in 1000 words

- 9. State and prove Chebychev's in equity.
- 10. Find the moment generating function of Gamma distribution and also find its mean and variance.
- 11. Find the probability density function of F distribution.
- 12. State and prove Rao-Blackwell theorem.
- 13. Test the hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 < \theta_0$ based on a sample of size n from the population with density function.

 $f(x,\theta) = (1+\theta)x^{\theta}, 0 < x < 1.$