PG-C-787

PGDMAT-11

M.SC DEGREE EXAMINATION - DECEMBER 2020

Mathematics

First Year

ALGEBRA

Time: 3 Hours Maximum Marks: 75

Section A $(5 \times 5 = 25 \text{ Marks})$

Answer any **FIVE** questions:

- 1. Suppose H and K are two subgroup of G, then prove that if HK is subgroup of G if and only if HK=KH.
- 2. Prove that subgroup of every cyclic group is cyclic.
- 3. Prove that the subgroup N of G is normal subgroup of G if and only if every right coset of N in G is left coset N in G.
- 4. Define field and integral domain and prove that every filed is an integral domain.
- 5. If U,V are ideals of R, then prove that U + V are also ideals of R.
- 6. Prove that if R is a Eculidean ring, then any two element a, b in R have a greatest common divisor d, then d = ta + sb, $s,t \in \mathbb{R}$.
- 7. If $v_1, v_2,...v_n \in V$ are linearly independent vectors, then every element in the linear spam have a unique representation of the form $\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n$, where each $\lambda_i \in F$.
- 8. If V and W are vector spaces with dimension m and n respectively over F, then prove that Hom (V, W) is dimension mn over F.

PG-C-787

1

Section B (5 x 10 = 50 Marks)

Answer any **FIVE** questions.

- 9. State and prove the first part of sylows theorem.
- 10. State and prove Cayley's theorem.
- 11. Let R be a commutative ring with unit element and M is a ideal of R. Then prove that M is maximal ideal of R if and only if R/M is a field.
- 12. Let L is a finite dimension inner product space, then prove that V has an orthonormal set as a basis.
- 13. If L is a finite extension of K, K is a finite extension of F, then prove that L is a finite extension of F, and also prove that [L:K][K:F] = [L:F].
- 14. If V is a finite dimension over F, then prove that $T \in A(V)$ is singular if and only if there exists $v \neq 0$ in V such that vT=0.
- 15. V is a finite dimension over F, then for S, $T \in A(V)$ then prove the following
 - (i) $r(ST) \le r(T)$
 - (ii) $r(ST) \le r(S)$
 - (iii) r(ST) = r(TS) = r(T), for *S* regular in A(V).
- 16. If $T \in A(V)$ has all its characteristic roots if F, then prove that there is a basis of V is which the matrix of T is triangular.

PG-A394

PGDMAT-12

M.S.C. DEGREE EXAMINATION DECEMBER 2020.

Mathematics

Second Year

REAL ANALYSIS

Time: 3 Hours Maximum Marks: 75

SECTION-A $(5 \times 5 = 25 \text{ Marks})$

Answer any FIVE questions.

- 1. Prove that every infinite subset of countable set is countable.
- 2. Prove that union of arbitrary collection of open set is open. Give an example for union of arbitrary collection of closed set is not closed.
- 3. Verify whether f'(0) exists for the following function

$$f(x) = \begin{cases} x\sin(1/x) & x \neq 0 \\ x = 0 \end{cases}$$

- 4. Prove that a closed subset of a compact sets are closed.
- 5. Define gamma function and prove that $\Gamma(n+1) = n!$.
- 6. State and prove cauchy's criterion for uniform convergence .
- 7. State and prove weierstrass theorem.
- 8. Prove that a linear operator A in Rⁿ is invertible if and only if $det(A) \neq 0$.

PART – B

 $(5 \times 10 = 50 \text{ Marks})$

Answer any FIVE questions.

- 9. If a set E in Rⁿ, then prove that the following are equivalence
 - (i) E is closed and bounded

PG-A394

1

- (ii) E is compact
- (iii) Every infinite subset of E has a limit point in E
- 10. Suppose $\{\{s_n\}$ and $\{\{t_n\}$ are sequences , $\lim_{n\to\infty} s_n=s$ and $\lim_{n\to\infty} t_n=t$. Then prove that (i) $\lim_{n\to\infty} (s_n+t_n)=s+t$
 - (ii) $\lim_{n\to\infty} (s_n t_n) = s t$
- 11. Prove that a mapping of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- 12. Let f be a continuous mapping on a compact metric space X onto a metric space Y, then prove that f is uniformly continuous on X.
- 13. Derive Stirling's formula.
- 14. If f is a positive function on $(0, \infty)$ such that
 - (i) f(x+1) = xf(x)
 - (ii) f(1) = 1
 - (iii) log f is convex

then prove that $f(x) = \Gamma(x)$.

- 15. State and Prove inverse function theorem.
- 16. Prove that $\lim_{n\to\infty} (1 + 1 \setminus n)^n = e$

2 **PG-A394**

P.G. DIPLOMA EXAMINATION DECEMBER 2020

TOPOLOGY AND FUNCTIONAL ANALYSIS

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. If \mathcal{B} is a basis for the topology of X and \mathcal{C}_{σ} is a basis for the topology of Y, then prove that the collection $\mathcal{D} = \{B \times C / B \in \mathcal{B} \text{ and } C \in \mathcal{C}_{\sigma}\}$ is a basis for the topology of $X \times Y$.
- 2. If $f: X \to Y$; let X be metrizable, then prove that the function f is continuous if and only if for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x).
- 3. Prove that the image of a connected space under a continuous map is connected.

PG-C-851

1

- 4. Show that every compact subset of a Hausdorff space is closed.
- 5. Define first and second countability axioms and prove that the product of two Lindelof spaces need not be Lindelof.
- 6. Define normed linear space and prove that $||x|| ||y|| \le ||x y||$.
- 7. If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non-zero vector z_0 in H such that $z_0 \perp M$.
- 8. If P is a projection on H with range M and null space N, then prove that $M \perp N \Leftrightarrow P$ is selfadjoint and in this $N = M^{\perp}$.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

9. Let $\overline{d}(a,b) = \min\{ |a-b|,1 \}$ be the standard bounded metric on R. If x and y are two points of R^w , define $D(x,y) = \text{lub}\left\{ \frac{\overline{d}(x_i,y_i)}{i} \right\}$ then prove that D is a metric that induces the product topology on R^w .

- 10. If $f: A \to X \times Y$ is given by the equation $f(a) = (f_1(a), f_2(a))$, then prove that f is continuous if and only if the functions $f_1 = A \to X$ and $f_2: A \to Y$ are continuous.
- 11. Prove that the cartesian product of connected spaces is connected.
- 12. State and prove Urysohn lemma.
- 13. Prove that every regular space with a countable basis is normal.
- 14. State and prove Hahn-Banach theorem.
- 15. Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x+M in the quotient space $\frac{N}{M}$ is defined by $\|x+M\|=\inf\{\|x+m\|,\,m\in M\}$ then prove that $\frac{N}{M}$ is a normed linear space. Further if N is a Banach space, then prove $\frac{N}{M}$ is also Banach.
- 16. If $\{e_i\}$ is an orthonormal set in a Hillbert space H and if x is an arbitrary vector in H, then show that $x \Sigma(x, e_i)e_i \perp e_j$ for each j.