

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science

ASSIGNMENT

Programme Code No : 231

Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-25, Topology and Functional Analysis
Batch : AY 2018-19 - II Year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignments)

Assignment - I

Answer any one of the question not exceeding 1000 words.
Max : 25 Marks

1. State and Prove Urysohn̂̂́s lemma.
2. State and Prove Tietze extension theorem.
3. State and Prove Uryshon̂̂ metrization theorem.

Assignment - II

Answer any one of the question not exceeding 1000 words.

1. State and Prove Hahn-Banach Theorem, proving necessary result.
2. Prove that If N is normed linear space, then the closed unit sphere S^{*} in N^{*} is a compact

Hausdorff space in the weak ${ }^{*}$ topology.
3. State and prove Open Mapping theorem, proving necessary result.

Assignment - III

Answer any one of the question not exceeding 1000 words.

1. State and prove Closed Graph theorem, proving necessary result.
2. State and prove Bessel's inequality.
3. If $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ is an orthonormal set in a Hilbert space H and x is an arbitrary vector in H , then prove that $\left[\mathrm{x}-\Sigma\left(\mathrm{x}, e_{i}\right) e_{i}\right] \perp e_{j}$ for each j.

Assignment - IV

Answer any one of the question not exceeding 1000 words.

1. Let H be a Hilbert space and let $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ be an orthonormal set in H . Then the following conditions are equivalent to one another
(i) $\left\{e_{i}\right\}$ is complete.
(ii) $\mathrm{x} \perp e_{i} \forall i$ implies $\mathrm{x}=0$.
(iii) If x is an arbitrary vector in H , then $\mathrm{x}=\Sigma\left(\mathrm{x}, e_{i}\right) e_{i}$.
(iv) If x is an arbitrary vector in H , then $\|x\|^{2}=\Sigma\left|\left(x, e_{i}\right)\right|^{2}$.
2. State and prove Riesz Representation Theorem.
3. If T is a positive operator on a Hilbert space H, then prove that $I+T$ is non-singular.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science
ASSIGNMENT

Programme Code No : 231
Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-26, Operation Research
Batch : AY 2018-19 - II year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignments)

Assignment - I

Answer any one of the question not exceeding 1000 words.

1. Use Simplex method to solve the following L.P.P.

Maximize $Z=7 x_{1}+5 x_{2}$ subject to the constraints
$x_{1}+2 x_{2} \leq 6,4 x_{1}+3 x_{2} \leq 12, x_{1}, x_{2} \geq 0$
2. Use two-phase simplex method to minimize $Z=\frac{15}{2} x_{1}-3 x_{2}$

Subject to the constraints $3 x_{1}-x_{2}-x_{3} \geq 3, x_{1}-x_{2}-x_{3} \geq 2, x_{1}, x_{2}, x_{3} \geq 0$.
3. Use dual simplex method to solve the L.P.P.

Minimize $Z=x_{1}+2 x_{2}+3 x_{3}$ subject to the constraints
$x_{1}-x_{2}+x_{3} \geq 4, x_{1}+x_{2}+2 x_{3} \leq 8, x_{2}-x_{3} \geq 2, x_{1}, x_{2}, x_{3} \geq 0$.

Assignment - II

Answer any one of the question not exceeding 1000 words.

1. Illustrate interior-point algorithm.
2. Apply minimum Spanning Tree algorithm to obtain solution to the Seervada Park problem.
3. Explain the Augmenting Path Algorithm to the Seervada Park problem.

Assignment - III

Answer any one of the question not exceeding 1000 words.

1. Solve the following 3×3 game by linear programming

Player B
Player $A\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1\end{array}\right]$
2. Find the optimum integer solution to the following all I.P.P.

Maximize $Z=x_{1}+2 x_{2}$
Subject to the constraints
$x_{1}+x_{2} \leq 7, \quad 2 x_{1} \leq 11,2 x_{2} \leq 7, x_{1}, x_{2} \geq 0$ and are integers.
3. Use Branch-and Bound technique to solve the following I.P.P.

Maximize $Z=7 x_{1}+9 x_{2}$
Subject to the constraints
$-x_{1}+3 x_{2} \leq 6,7 x_{1}+x_{2} \leq 35, \quad 0 \leq x_{1}, x_{2} \leq 7, x_{1}, x_{2}$ are integers.

Assignment - IV

Answer any one of the question not exceeding 1000 words.

1. Explain Pure Birth and Death Model.
2. Explain Specialized Poisson Queues - M/A/1 Queue.
3. Write a note on Separable Convex Programming.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science

ASSIGNMENT

Programme Code No : 231

Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-27, Graph Theory and Algorithms
Batch : AY 2018-19 - II Year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignments)

Assignment - I

Answer any one of the question not exceeding 1000 words.

1. State and prove Menger's Theorem.
2. Write a note on "Operations of Graphs".
3. State equivalent conditions for a graph to be a Tree and Prove.

Assignment - II

Answer any one of the question not exceeding 1000 words.

1. Define an Eulerian Graph, give example and a counter example. Also state and prove a necessary and sufficient condition for a connected graph to be Eulerian.
2. Explain Marriage Problem, proving Hall's Marriage Theorem.
3. State and prove Tutte's Theorem.

Assignment - III

Answer any one of the question not exceeding 1000 words.

1. Explain Stable Matching and prove that for every assignment of preferences in a bipartite graph, there is a stable matching.
2. State and prove Vizing's Theorem.
3. State and prove Brooks Theorem.

Assignment - IV

Answer any one of the question not exceeding 1000 words.

1. Write a note on Mycielski's Construction.
2. Define the chromatic polynomial of a graph and list some properties of chromatic polynomial and justify your answer.
3. Prove the following are equivalent:
a) Every planner graph is 4-vertex colourable.
b) Every plane graph is 4-face colourable
c) Every simple 2-edge connected 3-regular planar graph is 3-edge colourable.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science
ASSIGNMENT

Programme Code No : 231
Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-28, Differential Equations
Batch : AY 2018-19 - II Year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignments)

Assignment - I

Answer any one of the question not exceeding 1000 words.

1. State and prove the Existence Theorem for the initial value problem of a second order linear homogeneous differential equation.
2. Let $\emptyset_{1}, \emptyset_{2}, \ldots, \emptyset_{\mathrm{n}}$ are n solutions of a linear differential equation $\mathrm{L}(\mathrm{y})=0$ on an interval I. Then prove that $\emptyset_{1}, \emptyset_{2}, \ldots, \emptyset_{n}$ are independent on I if and only if $W\left(\emptyset_{1}, \Phi_{2}, \ldots, \emptyset_{n}\right)(x) \neq 0$ for all x in I .
3. Let $\left\{\emptyset_{1}, \emptyset_{2}, \ldots, \emptyset_{n}\right\}$ be n solutions of a linear homogeneous equation with constant coefficients $\mathrm{L}(\mathrm{y})=0$ on an interval I containing a point x_{0}. Then prove that $\mathrm{W}\left(\emptyset_{1}, \emptyset_{2}, \ldots, \emptyset_{\mathrm{n}}\right)(x)=\mathrm{e}^{-\mathrm{al(x-x0)}} \mathrm{~W}\left(\emptyset_{1}, \emptyset_{2}, \ldots, \emptyset_{\mathrm{n}}\right)\left(\mathrm{x}_{0}\right)$.

Assignment - II

Answer any one of the question not exceeding 1000 words.

1. Explain the Algorithm of variation of Parameter method and also find a particular solution of $y^{\prime \prime}+y=\operatorname{cosec} x$.
2. Find the solution of the initial value problem
$y^{\prime \prime}-2 y^{\prime}+y=2 x, y(0)=6, y^{\prime}(0)=2$.
3. Prove that for each n there is one and only one polynomial solution $P_{n}(x)$ of degree n for the Legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ satisfying $P_{n}(1)=1$.

Assignment - III

Answer any one of the question not exceeding 1000 words.

1. Define Bessel Equation and solve.
2. Solve the initial value problem $y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=0, y^{\prime}(0)=1$ on the interval $[0, a]$ where a is any positive real number.
3. Find a fundamental matrix of the equation

$$
y^{\prime}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -2 & 3 \\
0 & 1 & 0
\end{array}\right] y
$$

Assignment - IV

Answer any one of the question not exceeding 1000 words.

1. State and prove Picard's Theorem.
2. Reduce the equation into its canonical form: $\frac{\partial^{2} z}{\partial x^{2}}=x^{2} \frac{\partial^{2} z}{\partial y^{2}}$.
3. Write a note on Characteristic Curves.
