

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science
ASSIGNMENT

Programme Code No : 231
Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-15, Algebra
Batch : AY 2019-20 - I Year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment - I

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. State and prove Unique Factorization Theorem on Euclidean ring.
2. If K is a finite extension of F , then $\mathrm{G}(\mathrm{K}: \mathrm{F})$ is a finite group and its order, $\mathrm{O}(\mathrm{G}(\mathrm{K}: \mathrm{Q}))$ satisfies $O(G(K: F)) \leq[K: F]$.
3. State and prove Sylow $\hat{\mathbf{s}}$ Theorem

Assignment - II

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Prove that V is finite - dimensional over F, then any two bases of V have the same number of elements.
2. Prove that K is a normal extension of F iff K is the splitting field of some polynomial over F.
3. Prove that every finite abelian group is the direct product of cyclic groups.

Assignment - III

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. If A and B are finite dimensional subspaces of a vector space V, then prove that $A+B$ is finite $\operatorname{dimensional}$ and $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.
2. If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.
3. Prove that Two abelian groups of order p^{n} are isomorphic iff they have the same invariants.

Assignment - IV

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Show that the number e is transcendental.
2. Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.
3. R is a commutative ring with unit element and M is an ideal of R. Prove that M is a maximal ideal of R iff R / M is a field.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Science
ASSIGNMENT

Programme Code No : 231
Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-16, Real Analysis
Batch : AY 2019-20 - I year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment - I

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. If f is monotonic on $[\mathrm{a}, \mathrm{b}]$ and α is monotonically increasing and continuous function on $[\mathrm{a}, \mathrm{b}]$ with $\alpha(\mathrm{a})$ and $\alpha(\mathrm{b})$ finite, then prove that $\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.
2. State and prove Inverse function theorem.
3. Prove that every k-cell in R^{k} is compact.

Assignment - II

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Write a note on Rectifiable curves.
2. State and prove Implicit function Theorem.
3. State and prove Heine Borel theorem

Assignment - III

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. State and prove Stone weierstrass theorem.
2. State and prove Rank theorem.
3. State and prove Riemann's Theorem on rearrangement.

Assignment - IV

Answer any one of the question not exceeding 1000 words

1. Prove that any polynominal with complex co-efficient has a root in C.
2. Define a contraction map and prove that if \emptyset is a contraction map on a complete metric space then prove that it has one and only fixed point.
3. 3. Define uniformly continuous function. Also prove that if f is a continuous mapping of a compact metric space X into a metric space Y, then f is uniformly continuous. Is compactness necessary in this result?

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science
ASSIGNMENT

Programme Code No	$: 231$
Programme Name	$:$ M.Sc., Mathematics
Course Code \& Name	: MMS-17, Complex Analysis and Numerical Analysis
Batch	: AY 2019-20 - I year
No.of Assignment	: One Assignment for Each 2 Credits
Maximum CIA Marks	$: 25$ (Average of Total No. of Assignment)

Assignment - I

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Expand $\frac{z}{(z-1)(2-z)}$ in Laurent series valid for i) $|z|<1$, ii) $1<|z|<2$, iii) $|z|>2$ iv) $|z-1|>1$, (v) $0<|z-2|<1$.
2. Solve : $y^{\prime}=x y, y(1)=2$, for $x=1.4$ using Runge-Kutta method.
3. Use Bisection method to find the approximate value of the root of the equation $3 x-\sqrt{1+\sin x}=0$.

Assignment - II

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Solve the system of equations by Gauss-Seidel method.
$8 x-y+z=18,2 x+5 y-2 z=3, x+y-3 z=-6$.
2. Using modified Euler method, find the value of y when $x=0.3$, given that $\frac{d y}{d x}=x+y, y(0)=1$.
3. Explain Gauss elimination method and solve the following system of equations by Gauss elimination method.

$$
10 x_{1}+x_{2}+x_{3}=12, x_{1}+10 x_{2}+x_{3}=12, x_{1}+x_{2}+10 x_{3}=12 .
$$

Assignment - III

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Use power method to find the dominant eigen value and eigenvector of

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

2. Explain Milne method and apply to find $y(1.0)$ given that $y^{\prime}=x-y^{2}, y(0)=0$.]
3. Explain Gauss - jordan method and solve the following system of equations by Gauss jordan method.

$$
10 x_{1}+x_{2}+x_{3}=12, x_{1}+10 x_{2}+x_{3}=12, x_{1}+x_{2}+10 x_{3}=12 .
$$

Assignment - IV

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Solve : $\frac{d y}{d x}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1$ by the Picard method of successive approximations.
2. Derive Simpson's one -third rule and Apply Simpson's one -third rule to evaluate the approximate value of the integral by dividing the range into 8 equal parts.

$$
\int_{2}^{10} \frac{d x}{1+x}
$$

3. Solve the following equation using Guass-Jacobi iteration method.

$$
20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25
$$

TAMIL NADU OPEN UNIVERSITY

Chennai - 15

School of Science
ASSIGNMENT

Programme Code No : 231
Programme Name : M.Sc., Mathematics
Course Code \& Name : MMS-18, Mathematical Statistics
Batch : AY 2019-20 - I year
No.of Assignment : One Assignment for Each 2 Credits
Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment - I

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Write a note on Normal Distribution.
2. Let Z_{n} be $\chi^{2}(\mathrm{n})$. Find the limiting distribution of the random variable $\mathrm{y}_{\mathrm{n}}=\frac{z_{\mathrm{n}}-n}{\sqrt{2 n}}$.
3. Write a note on Conditional Probability.

Assignment - II

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Find the moment generating function of a bivariate normal distributions.
2. Let the random variable X have the probability density function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}1 ; 0<x<1 \\ 0 ; \text { elsewhere }\end{array}\right.$ Let X_{1} and X_{2} denote a random sample from this distribution. Find the joint probability density function of Y_{1} and Y_{2} where $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{1}-X_{2}$. Find also marginal probability density function of Y_{1} and Y_{2}.
3. Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=2,0<\mathrm{x}<\mathrm{y}, 0<\mathrm{y}<1$, zero elsewhere, be the joint probability density function of X and Y. show that the conditional means are, respectively $\frac{1+x}{2}, 0<x<1$ and $\frac{y}{2}, 0<y<1$. show also that the correlation coefficient of X and Y is $\rho=\frac{1}{2}$.

Assignment - III

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Show that $\mathrm{Y}=\frac{1}{1+\frac{\mathrm{m}_{2}}{r_{2}} F}$ where F has an F distribution with parameters r_{1} and r_{2} has a beta distribution.
2. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ denote a random sample of size 3 from a distribution that is $\mathrm{n}(0,1)$. Find the probability density function of $Y=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$.
3. Write a note on Poisson Distribution.

Assignment - IV

Answer any one of the question not exceeding 1000 words
Max: 25 Marks

1. Write a note on Stochastic convergence.
2. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ denote a random sample of size $n \geq 2$ from a distribution that is n (μ, σ^{2}). Let $\overline{\mathrm{X}}$ and S^{2} be the mean and variance of this random sample. Then
(a) $\overline{\mathrm{X}} \sim \mathrm{n}\left(\mu, \frac{q^{2}}{n}\right)$
(b) $\mathrm{n} \frac{s^{\mathrm{a}}}{\sigma^{2}} \sim \chi^{2}(\mathrm{n}-1)$ and
(c) $\overline{\mathrm{X}}$ and S^{2} are stochastically independent.
3. Write a note on Binomial Distribution .
