PG-381

MMS-25

M.Sc. DEGREE EXAMINATION – JUNE 2019.

Second Year

Mathematics

TOPOLOGY AND FUNCTIONAL ANALYSIS

Time : 3 hours

Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

- 1. Let Y be a subspace of X; let A be a subset of Y; let \overline{A} denote the closure of A is X. Then prove that the closure of A is Y equals $A \cap Y$.
- 2. State and prove the pasting lemma.
- 3. Prove that the union of a collection of connected sets that have a common point is connected.
- 4. Prove that every compact subset of a Hausdorff space is closed
- 5. Prove that every metrizable space is normal.

- 6. Prove that the operations of addition and scalar multiplication is normed linear space N are jointly continuous.
- 7. State and Prove Mukowski's inequality.
- 8. State and Prove parallelogram law of identity.

PART B — $(5 \times 10 = 50 \text{ marks})$

Anser any FIVE questions.

- 9. Prove that the topologies on \mathbb{R}^n induced by the euclidean metric d and the square metric P are the same as the Product topology on \mathbb{R}^n .
- 10. State and Prove the tube lemma.
- 11. State and Prove the Lebesgue number lemma.
- 12. State and Prove the Urysohn lemma.
- 13. State and Prove the Open mapping theorem.
- 14. State and Prove the Uniform boundedness theorem.
- 15. If M is a proper closed linear subspace of a Hilbert space H, then Prove that there exists a non-zero vector z_0 is H such that $z_0 \perp M$.
- 16. State and prove Riesz-Representation theorem.

2

PG-382 MMS-26

M.Sc. DEGREE EXAMINATION – JUNE, 2019.

Second Year

Mathematics

OPERATIONS RESEARCH

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

1. Define :

- (a) Objective function
- (b) Optimal solutions
- (c) Surplus variable.
- 2. Write the working procedure for dual simplex method.
- 3. Draw the network for the project whose activities and their procedure relationship are as given below :

Activities :	Α	В	С	D	Е	F	G	Η	Ι
Immediate predecessor :	_	А	А	1	D	B, C, E	F	Е	G, H

- 4. State Bellman's principle of optimality. Explain the forward and backward induction methods.
- 5. For what value of λ , the game with the following matrix is strictly determinable.

Player B

$$B_{1} \quad B_{2} \quad B_{3}$$

$$A_{1} \begin{pmatrix} \lambda & 6 & 2 \\ -1 & \lambda & -7 \\ A_{3} & -2 & 4 & \lambda \end{pmatrix}$$

Ignoring the value of λ .

- 6. Explain the Branch and Bound method in an integer programming problem.
- 7. Babies are born is the sparsely populated state at the rate of one birth every 12 minutes.

The time between births follows an exponential distribution. Find the following :

- (a) the average number of births per year
- (b) the probability that no birth.
- 8. Show how the following problem can be separable.

Maximize $Z = x_1x_2 + x_3 + x_1x_3$

Subject to

 $x_1 x_2 + x_2 + x_1 x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

2

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. Solve by Simplex method
 - Maximize $z = 3x_1 + 2x_2 + 5x_3$ Subject to $x_1 + 4x_2 \le 420$ $3x_1 + 2x_2 \le 460$ $x_1 + 2x_2 + x_3 \le 430$
- 10. Use dual simplex method to solve the LPP.

Min $Z = 2x_1 + x_2$ Subject to $3x_1 + x_2 \ge 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \ge 3$ $x_1, x_2 \ge 0$

- 11. Write down the stepwise procedure for determining the critical path of a project.
- 12. Solve the following by dynamic programming problem : Min $Z = y_1 + y_2 + ... + y_n$ Subject to $y_1, y_2 ... y_n = b$ and $y_1, y_2 ... y_n \ge 0$.
 - 3

13. Solve the following game graphically.

Player B Player A $\begin{pmatrix} 1 & 6 & 4 & -1 \\ -1 & 1 & -2 & 5 \end{pmatrix}$

14. Use Branch and Bound method to solve the following :

Max $Z = 2x_1 + 2x_2$ Subject to $5x_1 + 3x_2 \le 8$ $x_1 + 2x_2 \le 4$ $x_1, x_2 \ge 0$ and integer

- 15. Discuss pure birth model.
- 16. Solve the following problem by geometric programming :

4

Minimize $z = 5x_1x_2^{-1} + 2x_1^{-1} + 5x_1 + x_2^{-1}$

 $x_1, x_2 \ge 0$.

PG-383 MMS-27

M.S.C. DEGREE EXAMINATION – JUNE 2019.

Mathematics

Second Year

GRAPH THEORY AND ALGORITHMS

Time : 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

- 1. Define an isomorphism between two graphs and give an example.
- 2. If G is a tree, then prove that q=p-1.
- 3. Show that each component of a forest is a tree.
- 4. Define connectivity and edge connectivity of a graph and illustrate with examples.
- 5. State and prove a necessary and sufficient condition for a graph to be eulerian.
- 6. Prove that Hamiltorian graph is 2-connected.

- 7. What is the importance of mycielski's construction.
- 8. Prove that the graph k3,3 is non-planar.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. What the steps of Dijkstra's Algorithm.
- 10. State and prove cayley's formula.
- 11. For any graph, prove that $K(G) \le \lambda(G) \le \delta(G)$.
- 12. Prove that a connected graph G is Euleriam if and only if each vertex of even degree.
- 13. Prove that every 3-regular graph without cut edges had a perfect matching.
- 14. Explain matching, matching number, M-alternating path, M-argumented path
- 15. State and prove vizing theorem.
- 16. State and prove Euler's formula in a connected plane graph.

PG-384 MMS-28

M.Sc. DEGREE EXAMINATION – JUNE 2019.

Second Year

Mathematics

DIFFERENTIAL EQUATIONS

Time : 3 hours

Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

- 1. Solve y''-2y'-3y = 0, y(0) = 0, y'(0) = 4.
- 2. Let $\phi_1 \phi_2 \dots \phi_n$ be *n* solutions of a linear differential equation L(y) = 0 on an interval I. Then prove that if $\phi_1 \phi_2 \dots \phi_n$ are independent on I, then $W(\phi_1, \phi_2 \dots \phi_n) \neq 0$ for all *x* in I.
- 3. Prove that $P_n(-x) = (-1)^n P_n(x)$ and hence $P_n(-1) = (-1)^n$ where $P_n(x)$ is the Legendre polynomial.

- 4. Prove that A solution matrix ϕ of Y' = A(x)Y ($x \in I$) is a fundamental matrix if and only if $(\det \phi)(x) \neq 0$ for all ($x \in I$).
- 5. Let f(x) be periodic with period ω . Let A be an $n \times n$ constant matrix. Then prove that a solution of y' = Ay + f(x) is periodic of periods ω if and only if $y(0) = y(\omega)$.

6. Solve
$$\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial y^4} = \frac{\partial^4 z}{\partial x^2 r y^2}$$

- 7. Show that the one-parameter family of surfaces $x^2 + y^2 = cz^2$ can form a family of equipotential surfaces.
- 8. Define Interior and Exterior Neumann's problem.

PART B — $(5 \times 10 = 50 \text{ marks})$

- 9. Prove that for any real number x_0 and constants α, β there exists a solution ϕ for the initial value problem $L(y) = y'' + a_1 y' + a_2 y = 0$, $y(x_0) = \alpha$ $y'(x_0) = \beta$ on $-\infty < x < \infty$.
 - 2 PG-384

10. Find the solution of the IvP

1

$$y''-2y'+y = 2x, y(0) = 6, y'(0) = 2.$$

11. Define Legendre equation. Prove that

$$\int_{-1}^{1} P_n(x) P_m(x) = 0 \text{ with } n \neq m.$$

- 12. Derive Bessel's function of order α of the first kind.
- 13. Let A(x) be an $n \times n$ matrix which is continuous on an interval I. Then prove that the set of all solutions of the system of equations y' = A(x)y forms an *n*-dimensional vector space over the field of complex numbers.
- 14. Reduce the equation $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ into its canonical form.
- 15. (a) Find a particular integral of $(D^2 D)z = e^{2x+y}$.
 - (b) Classify the equations:

(i)
$$u_{xx} + u_{yy} = u_{xy}$$

- (ii) $u_{xx} + u_{yy} = u_{zz}$ (4+6)
- (iii) $u_{xx} + u_{yy} + u_{zz} = 0.$

16. Let y(x, y, z) = c be an one-parameter family of surfaces. If *u* is a family of equipotential surfaces,

4

then prove that

$$\frac{\Delta^2 f}{\left(\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2\right)}$$
 is

function of f alone.

PG-384