PG – 704

MMS-15/ PGDMAT - 11

M.Sc.DEGREE / P.G DIPLOMA EXAMINATION —DECEMBER, 2019.

First Year

Mathematics

ALGEBRA

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. State and prove Cauchy's theorem for abelian groups.
- 2. Let G be a finite group and suppose that G is a subgroup of the finite group M. suppose further that M has a p-Sylow subgroup Q. Then prove that G has a p-Sylow subgroup P.
- 3. If R is a ring, then for all $a, b \in R$. Prove that
 - (a) a0 = 0a = 0
 - (b) a(-b) = (-a)b = -(ab)
 - (c) (-a)(-b) = ab.

in addition, R has a unit element 1, then

- (d) (-1)a = -a
- (e) (-1)(-1) = 1

- 4. If V is finite-dimensional and if W is a subspace of V, then show that W is finite-dimensional, dim $W \le \dim V$ and dim V/ W = dim V dim W.
- 5. If $u, v \in V$ then prove that $||(u, v)|| \le ||u|| ||v||$.
- 6. Prove that "The polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and f'(x) have a nontrivial common factor".
- 7. If $p(x) \in F[x]$ is solvable by radicals over F, then prove that the Galois group over F of p(x) is a solvable group.
- 8. If V is finite-dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. Let ϕ be a homomorphism of G onto $\overline{\mathbf{G}}$ with kernel K. Then prove that $G/K \approx \overline{G}$.
- 10. Let G be an abelian group of order p^n , p a prime. Suppose $G = A_1 \times A_2 \times \ldots \times A_k$, where each Ai = (ai) is cyclic of order p^{n_1} and $n_1 \ge n_2 \ge \ldots \ge n_k > 0$. If m is an integer such that $n_t > m \ge n_{t+1}$ then $G(p^m) = B_1 \times \ldots \times B_t \times A_{t+1} \times \ldots \times A_k$ where Bi is cyclic of order p^m , generated by $a_i^{p^{n_i-m}}$ for $i \le t$. Prove that the order of G (p^m) is p^u , where $u = mt + \sum_{i=t+1}^k n_i$.

 $\mathbf{2}$

- 11. State and prove unique factorization theorem
- 12. If V and Ware of dimensions m and n, respectively, over F, then prove that Hom (V,W) is of dimension mn over F.
- 13. If L is a finite extension of K and if K is a finite extension of F, then prove that L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].
- 14. Prove that the number e is transcendental.
- 15. If K is a finite extension of F, then prove that G(K, F) is a finite group and its order, o(G(K, F)) satisfies $o(G(K, F)) \leq [K:F]$.
- 16. If $T \in A(V)$ has all its characteristic' roots in F, then prove that there is a basis of V in which the matrix of T is triangular.

3

PG - 704

MMS-16/ PGDMAT-12

M.Sc. DEGREE / P.G. DIPLOMA EXAMINATION — DECEMBER, 2019.

PG-705

First Year

Mathematics

REAL ANALYSIS

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Show that infinite subset of a countable set is countable.
- 2. State and prove the ratio test .
- 3. Prove that A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- 4. Suppose f is continuous on [a,b], f(x) exists at some point $x \in [a,b]$, g is defined on an interval I

which contains the range of f, and g is differentiable at the point f(x). If $h(t) = g(f(t))(a \le t \le b)$, then h is differentiable at x, and h'(x) = g'(f(x))f(x).

- 5. Suppose f is a continuous mapping of [a, b] into R^k and f is differentiable in (a, b). Then there exists $x \in (a, b)$ such that $|f(b)-f(a)| \le (b-a)|f(x)|$.
- 6. State and prove the L-Hospital rule.
- 7. State and prove Fundamental theorem of calculus.
- 8. State and prove inverse function theorem.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. Show that countable union of countable sets is countable.
- 10. State and prove the root test.
- 11. Let *f* be a continuous mapping of a compact metric space *X* into a metric space *Y*. Then prove that *f* is uniformly continuous on *X*.

2 **PG-705**

- 12. Prove that $f \in R[a, b]$ on [a, b] if and only if for every $\in > 0$ there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$.
- 13. Suppose $f \in R[a, b]$ on [a, b] $m \le f \le M$, Φ is continuous on [m, M], and $h(x) = \Phi$ (f(x)) on [a, b]. Then prove that $h \in R[a, b]$.
- 14. Prove that The sequence of functions $\{f_n\}$, defined on *E*, converges uniformly on *E* if and only if for every $\in > 0$ there exists an integer *N* such that $m \ge N, n \ge N, x \in E$ implies $|f_n(x) - f_m(x)| \le \epsilon$.
- 15. State and prove Stone-Weierstrass theorem.
- 16. State and prove Implicit function theorem.

3

PG-705

PG - 706 MMS-17

M.Sc. DEGREE EXAMINATION – DECEMBER, 2019.

First Year

Mathematics

COMPLEX ANALYSIS AND NUMERICAL ANALYSIS

Time : 3 hours

Maximum marks : 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Show that an analytic function with constant modulus is constant.
- 2. Find a bilinear transformation which maps z = 1, 0, -1 of z-plane into w = i, 0, -i of w-plane.
- 3. State and prove Liouville's theorem.
- 4. Solve the following system of equations by Gauss-Jordan method.

x + 2y + z = 32x + 3y + 3z = 103x - y + 2z = 13

- 5. Find a positive root of $xe^x = 2$ by the method of false position.
- 6. Find the value of y at x = 21 from the following data.

- 7. Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Trapezoidal rule with
- 8. Using Euler's method, solve the equation y' = x + y, y(0) = 1 for x = 0.2, 0.4.

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. State and prove the sufficient condition for f(z) = u + iv to be analytic is a domain *D*.
- 10. State and prove Laurent's expansion theorem.
- 11. Show that $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)} = \frac{\pi}{3}$.

h = 0.2.

12. Find the real positive root of $3x - \cos x - 1 = 0$ by Newton's method correct to 4 decimal places.

2 PG - 706

13. Solve the following system of equations by Gauss Seidal method

> 10x - 5y - 2z = 3 4x - 10y + 3z = -3x + 6y + 10z = -3

- 14. Derive Lagrange's formula for interpolation.
- 15. Using R.K. method of fourth order, find y(0.8)correct to 4 decimal places if $y' = y - x^2$, y(0.6) = 1.7379.
- 16. Using Adam's method, find y(0.4) given

 $\frac{dy}{dx} = \frac{1}{2}xy, \ y(0) = 1, \ y(0.1) = 1.01, \ y(0.2) = 1.022,$ y(0.3) = 1.023.

3

PG – 706

PG-707 MMS-18

M.Sc. DEGREE EXAMINATION — DECEMBER, 2019.

First Year

Mathematics

MATHEMATICAL STATISTICS

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Define continuous distribution function and State its properties.
- 2. State and Prove the addition theorem of expectation.
- 3. If the events A and B are such that $P(A) \neq 0, P(B) \neq 0$ and A is independent of B, then prove that B is independent of A.
- 4. Let $x_1, x_2, ..., x_n$ be a random sample from a population with continuous density. Show that $Y_1 = \min(X_1, X_2, ..., X_n)$ is exponential with parameter $n\lambda$ if and only if each X_i is exponential with parameter λ .

- 5. If $x_1, x_2, ..., x_n$ is a random sample from a normal population $N(\mu, 1)$. Show that an $t = \frac{1}{n} \sum_{i=1}^n x_i^2$, unbiased estimator of $\mu^2 + 1$
- 6. If T is an unbiased estimator for a θ , show that T² is a biased estimator for θ^2 .
- 7. Explain most powerful test and uniformly most powerful test.
- 8. Let $X_1, X_2, ..., X_n$ be a random sample from Cauchy population:

 $f(x,\theta) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}; -\infty < x < \infty; -\infty < \theta < \infty$

Examine if there exists a sufficient statistic for θ .

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

- 9. If A and B are independent events, then prove that
 - (a) A and \overline{B}
 - (b) \overline{A} and B
 - (c) \overline{A} and \overline{B} are also independent.

2 **PG-707**

- 10. From a city population, the probability of selecting
 - (a) a male or a smoker is 7/10,
 - (b) a male smoker is 2/5, and
 - (c) a male, if a smoker is already selected is 2/3. Find the probability of selecting
 - (i) a non-smoker,
 - (ii) a male, and
 - (iii) a smoker, if a male is first selected.
- 11. State and Prove Chebychev's inequality.
- 12. State and Prove Lindeberg-Levy theorem.
- 13. If $X_1, X_2, ..., X_n$ are random observations on a Bernoulli variate X taking the value 1 with probability P and the value 0 with probability (1- p), show that:

$$\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n} \right)$$
 is a consistent estimator of $p(1-p)$

14. State and Prove Neymann Pearson Lemma.

15. Given the frequency function

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, 0 \le x \le \theta\\ 0, \text{elsewhere} \end{cases}$$

and that you are testing the null hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$, , by means of a single observed value of x. What would be the sizes of the type I and type II errors, if you choose the interval (a) $0.5 \le x$, (b) $1 \le x \le 1.5$ as the critical regions? Also obtain the power function of the test.

16. State and Prove Rao Cramer inequality.

4

PG-707