UG-331 BMC-21/ BMS-21

B.Sc. DEGREE EXAMINATION – JUNE, 2019.

Second Year

Mathematics with Computer Applications

GROUPS AND RINGS

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following.

- 1. Define (a) partial ordering relation, (b) poset and give examples.
- 2. Define centre of a group and normalizer of a group.
- 3. If *H* and *K* are subgroups of a group *G*, then show that $H \cap K$ is also a subgroup of *G*.

- 4. Let H be a subgroup of a group G. Show that the number of left cosets of H is the same as the number of right cosets of H.
- 5. Define a normal subgroup of a group. Show that every subgroup of an abelian group is a normal subgroup.
- 6. Let R be a ring with identity. Show that the set of all units in R is a group under multiplication.
- 7. Show that a finite commutative ring R without zero divisor is a field.
- 8. Show that the field of complex numbers is not an ordered field.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE of the following.

- 9. Define a bijection. Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x 3. Show that f is a bijection and compute f^{-1} . Also compute $f^{-1} \circ f$ and $f \circ f^{-1}$.
- 10. Show that a non-empty subset *H* of a group *G* is a subgroup of *G* if and only if $a, b \in H \Rightarrow ab^{-1} \in H$.

2

- 11. State and prove Lagrange's theorem.
- 12. State and prove Cayley's theorem.

- 13. Let R be a commutative ring with identity. Show that an ideal M of R is maximal if and only if R/M is a field.
- 14. (a) Show that any field is an integral domain.
 - (b) Show that any finite integral domain is a field.
- 15. Show that any integral domain D can be embedded in a field F and every element of F can be expressed as a quotient of two elements of D.
- 16. Show that any Euclidean domain is a unique factorization domain.

3

UG-332 BMS-22

B.Sc. DEGREE EXAMINATION – JUNE, 2019.

Second Year

Mathematics

STATISTICS AND MECHANICS

Time : 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

1. From the following data compute arithmetic mean :

Marks :	0-10	10-20	20-30	30-40	40-50	50-60
No. of students :	5	10	25	30	20	10

2. Fit a straight line to the following data :

Year :	1969	1970	1971	1972	1973	1974	1975	1976
Sales (in lakhs of Rs.):	38	40	65	72	69	60	87	95

Estimate the sales for 1977.

3. Calculate Spearman's coefficient of correlation between marks assigned to ten students by judges X and Y in a certain competitive test as shown below.

Marks by judge X :	52	53	42	60	45	41	37	38	25	27
Marks by judge Y :	65	68	43	38	77	48	35	30	25	50

4. Compute Fisher's Ideal Index number from the following data :

Commodity		1999	2000		
	Price Quantity		Price	Quantity	
А	2	8	4	6	
В	5	10	6	5	
С	4	14	5	10	
D	2	19	2	13	

5. A random variable X has the following probability function values of X,

<i>x</i> :	0	1	2	3	4	5	6	7
p(x):	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$

- (a) Find k,
- (b) Evaluate P(X < 6), $P(X \ge 6)$ and P(0 < X < 5)
- 6. Twenty people were attached by a disease and only 18 survived. Will you reject the hypothesis that the survival rate, if attacked by this disease, is 85% in favour of the hypothesis that it is more, at 5% level (use large sample test)
 - $\mathbf{2}$

- 7. A particle is projected over a triangle from one end of its horizontal base to graze the vertex and fall at the other end of the base. If *B* and *C* are the base angles and α , the angle of projection show that $\tan \alpha = \tan B + \tan C$.
- 8. Show that the resultant of two simple harmonic motions is also simple harmonic.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

9. Calculate β_1 and β_2 from the following distribution :

Age :	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65
Frequency :	2	8	18	27	25	16	7	2

- 10. From the following data obtain the two regression equations and estimate the value of Y which should correspond on an average to X = 6.2.
- 11. The following are the annual premiums charged by the Life Insurance Corporation of India for a policy of Rs. 1,000. Calculate the premium payable at the age of 26 by using Newton's formula.

Age in Years :	20	25	30	35	40
Premium (Rs.) :	23	26	30	35	42

-	
9	
υ	

12. The following table relates to the tourist arrivals during 1990 to 1996 in India :

Years :	1990	1991	1992	1993	1994	1995	1996
Tourist arrivals (in millions) :	18	20	23	25	24	28	30

Fit a straight line trend by the method of least squares and estimate the number of tourists that would arrive in the year 2000.

- 13. The incidence of occupational disease in an industry is that the workmen have a 20% chance of suffering from it. What is the probability that out of six workmen, 4 or more will contact the disease?
- 14. To assess the significance of possible variation in performance in a certain test between the grammar schools of a city a common test was given to a number of students taken at random from the senior fifth class of each of the four schools concerned. The results are given below :

Make an analysis of variance of data

Schools									
Α	A B C D								
8	12	18	13						
10	11	12	9						
12	9	16	12						
8	14	6	16						
7	4	8	15						

- 15. Discuss the motion of two smooth spheres collide each other directly.
- 16. Obtain the differential equations of a central orbit in polar coordinates.
 - 4

UG-333 BMS-23

B.Sc DEGREE EXAMINATION – JUNE, 2019.

First Year

Mathematics/Mathematics with Computer Applications

CLASSICAL ALGEBRA AND NUMERICAL METHODS

Time : 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following.

1.	Sum	to	infinity	the	series
	1 + 3	$1+3+3^2$	$1+3+3^2+3^3$	1	
	$1 + \frac{1}{2!}$	3!	4 !	+	

- 2. Prove that if n > 2, then $(n !)^2 > n^n$.
- 3. Solve the equation $x^3 12x^2 + 39x 28 = 0$ whose roots are in A.P.

- 4. Assuming that a root of $x^3 9x + 1 = 0$ lies between 2 and 3, find that root by bisection method.
- 5. Solve the following system of equations by Gauss elimination method

2x + 3y - z = 5, 4x + 4y - 3z = 3, 2x - 3y + 2z = 2

6. Use Lagrange's formula to fit a polynomial to the following data and hence find y(1).

7. Give the following table, find f(35), by Stirling's formula of interpolation

x	20	30	40	50
y(x)	512	439	346	243

- 8. Find the first derivative of the function tabulated below at x = 0.6
 - x 0.4 0.5 0.6 0.7 0.8 y 1.5836 1.7974 2.0442 2.3275 2.6511

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE of the following.

9. Find the sum to infinity the series

$$\frac{5}{3\cdot 6} + \frac{5\cdot 7}{3\cdot 6\cdot 9} + \frac{5\cdot 7\cdot 9}{3\cdot 6\cdot 9\cdot 12} + \dots$$
2 UG-333

- 10. Sum to infinity the series $\frac{1}{1 \cdot 2 \cdot 3} + \frac{5}{3 \cdot 4 \cdot 5} + \frac{9}{5 \cdot 6 \cdot 7} + \dots$
- 11. Solve the equation $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.
- 12. Solve the following system of equations by using Gauss-Seidal method

8x - 3y + 2z = 20, 4x + 11y - z = 33 and 6x + 3y + 12z = 35.

- 13. Using Newton-Raphson method, find the real positive root of $3x \cos x 1 = 0$.
- 14. Interpolate by means of Gauss's backward formula the population of a place for the year 1966, given the following table :

 Year :
 1931
 1941
 1951
 1961
 1971
 1981

 Population :
 12
 15
 20
 27
 39
 52

- (in thousands) 12 15 20 27 55
- 15. Evaluate $\int_{4}^{5.2} \log_e x \, dx$ using :
 - (a) Trapezoidal rule,
 - (b) Simpson's one-third rule,
 - (c) Simpson's three-eight rule.

3

16. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ given } y(0) = 1 \text{ at } x = 0.2, \ 0.4.$

UG-333

4