UG-331	BMC-21/ BMS-21

B.Sc. DEGREE EXAMINATION JUNE, 2019.

Second Year

Mathematics with Computer Applications GROUPS AND RINGS

Time : 3 hours
Maximum marks: 75
SECTION A - ($5 \times 5=25$ marks $)$
Answer any FIVE of the following.

1. Define (a) partial ordering relation, (b) poset and give examples.
2. Define centre of a group and normalizer of a group.
3. If H and K are subgroups of a group G, then show that $H \cap K$ is also a subgroup of G.
4. Let H be a subgroup of a group G. Show that the number of left cosets of H is the same as the number of right cosets of H.
5. Define a normal subgroup of a group. Show that every subgroup of an abelian group is a normal subgroup.
6. Let R be a ring with identity. Show that the set of all units in R is a group under multiplication.
7. Show that a finite commutative ring R without zero divisor is a field.
8. Show that the field of complex numbers is not an ordered field.

$$
\text { SECTION B }-(5 \times 10=50 \text { marks })
$$

Answer any FIVE of the following.
9. Define a bijection. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x-3$. Show that f is a bijection and compute f^{-1}. Also compute $f^{-1} \circ f$ and $f \circ f^{-1}$.
10. Show that a non-empty subset H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow a b^{-1} \in H$.
11. State and prove Lagrange's theorem.
12. State and prove Cayley's theorem.
13. Let R be a commutative ring with identity. Show that an ideal M of R is maximal if and only if R / M is a field.
14. (a) Show that any field is an integral domain.
(b) Show that any finite integral domain is a field.
15. Show that any integral domain D can be embedded in a field F and every element of F can be expressed as a quotient of two elements of D.
16. Show that any Euclidean domain is a unique factorization domain.

B.Sc. DEGREE EXAMINATION JUNE, 2019.

Second Year
Mathematics

STATISTICS AND MECHANICS

Time : 3 hours
Maximum marks : 75

SECTION A- ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. From the following data compute arithmetic mean :

Marks :	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of students :	5	10	25	30	20	10

2. Fit a straight line to the following data :

Year :	1969	1970	1971	1972	1973	1974	1975	1976
Sales (in lakhs of Rs.):	38	40	65	72	69	60	87	95

Estimate the sales for 1977.
3. Calculate Spearman's coefficient of correlation between marks assigned to ten students by judges X and Y in a certain competitive test as shown below.

Marks by judge X :	52	53	42	60	45	41	37	38	25	27
Marks by judge Y :	65	68	43	38	77	48	35	30	25	50

4. Compute Fisher's Ideal Index number from the following data :

Commodity	1999		2000	
	Price	Quantity	Price	Quantity
A	2	8	4	6
B	5	10	6	5
C	4	14	5	10
D	2	19	2	13

5. A random variable X has the following probability function values of X,

$x:$	0	1	2	3	4	5	6	7
$p(x):$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(a) Find k,
(b) Evaluate $\quad P(X<6), \quad P(X \geq 6) \quad$ and $P(0<X<5)$
6. Twenty people were attached by a disease and only 18 survived. Will you reject the hypothesis that the survival rate, if attacked by this disease, is 85% in favour of the hypothesis that it is more, at 5% level (use large sample test)
7. A particle is projected over a triangle from one end of its horizontal base to graze the vertex and fall at the other end of the base. If B and C are the base angles and α, the angle of projection show that $\tan \alpha=\tan B+\tan C$.
8. Show that the resultant of two simple harmonic motions is also simple harmonic.

$$
\text { SECTION B }-(5 \times 10=50 \text { marks })
$$

Answer any FIVE questions.
9. Calculate β_{1} and β_{2} from the following distribution :

Age :	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$
Frequency :	2	8	18	27	25	16	7	2

10. From the following data obtain the two regression equations and estimate the value of Y which should correspond on an average to $X=6.2$.
11. The following are the annual premiums charged by the Life Insurance Corporation of India for a policy of Rs. 1,000. Calculate the premium payable at the age of 26 by using Newton's formula.

Age in Years :	20	25	30	35	40
Premium (Rs.) :	23	26	30	35	42

12. The following table relates to the tourist arrivals during 1990 to 1996 in India:

Years :	1990	1991	1992	1993	1994	1995	1996
Tourist arrivals (in millions) :	18	20	23	25	24	28	30

Fit a straight line trend by the method of least squares and estimate the number of tourists that would arrive in the year 2000 .
13. The incidence of occupational disease in an industry is that the workmen have a 20% chance of suffering from it. What is the probability that out of six workmen, 4 or more will contact the disease?
14. To assess the significance of possible variation in performance in a certain test between the grammar schools of a city a common test was given to a number of students taken at random from the senior fifth class of each of the four schools concerned. The results are given below :

Make an analysis of variance of data
Schools

A	B	C	D
8	12	18	13
10	11	12	9
12	9	16	12
8	14	6	16
7	4	8	15

15. Discuss the motion of two smooth spheres collide each other directly.
16. Obtain the differential equations of a central orbit in polar coordinates.

B.Sc DEGREE EXAMINATION JUNE, 2019.

First Year
Mathematics/Mathematics with Computer Applications

CLASSICAL ALGEBRA AND NUMERICAL METHODS

Time : 3 hours
Maximum marks : 75
SECTION A - ($5 \times 5=25$ marks $)$
Answer any FIVE of the following.

1. Sum to infinity the series
$1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\ldots$.
2. Prove that if $n>2$, then $(n!)^{2}>n^{n}$.
3. Solve the equation $x^{3}-12 x^{2}+39 x-28=0$ whose roots are in A.P.
4. Assuming that a root of $x^{3}-9 x+1=0$ lies between 2 and 3 , find that root by bisection method.
5. Solve the following system of equations by Gauss elimination method
$2 x+3 y-z=5,4 x+4 y-3 z=3,2 x-3 y+2 z=2$
6. Use Lagrange's formula to fit a polynomial to the following data and hence find $y(1)$.

$$
\begin{array}{ccccc}
x & -1 & 0 & 2 & 3 \\
y(x) & -8 & 3 & 1 & 12
\end{array}
$$

7. Give the following table, find $f(35)$, by Stirling's formula of interpolation

x	20	30	40	50
$y(x)$	512	439	346	243

8. Find the first derivative of the function tabulated below at $x=0.6$

x	0.4	0.5	0.6	0.7	0.8
y	1.5836	1.7974	2.0442	2.3275	2.6511

SECTION B - $(5 \times 10=50$ marks $)$

Answer any FIVE of the following.
9. Find the sum to infinity the series $\frac{5}{3 \cdot 6}+\frac{5 \cdot 7}{3 \cdot 6 \cdot 9}+\frac{5 \cdot 7 \cdot 9}{3 \cdot 6 \cdot 9 \cdot 12}+\ldots$.
10. Sum to infinity the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{5}{3 \cdot 4 \cdot 5}+\frac{9}{5 \cdot 6 \cdot 7}+\ldots$.
11. Solve the equation
$6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
12. Solve the following system of equations by using Gauss-Seidal method
$8 x-3 y+2 z=20,4 x+11 y-z=33$ and $6 x+3 y+12 z=35$.
13. Using Newton-Raphson method, find the real positive root of $3 x-\cos x-1=0$.
14. Interpolate by means of Gauss's backward formula the population of a place for the year 1966, given the following table :

Year:	1931	1941	1951	1961	1971	1981
Population: (in thousands)	12	15	20	27	39	52

15. Evaluate $\int_{4}^{5.2} \log _{e} x d x$ using :
(a) Trapezoidal rule,
(b) Simpson's one-third rule,
(c) Simpson's three-eight rule.
16. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given $y(0)=1$ at $x=0.2,0.4$.
