UG-345 BPHY-11

B.Sc DEGREE EXAMINATION – JUNE, 2019.

First Year

Physics

MECHANICS, PROPERTIES OF MATTER AND SOUND

Time : 3 hours

Maximum marks: 75

PART A — $(5 \times 3 = 15 \text{ marks})$

Answer ALL questions.

1. Write the law of conservation of linear momentum.

நேர்திசை உந்தம் மாறாக் கோட்பாட்டை எழுதுக.

- Write the Kepler's law of Planetary motion.
 கோள்கள் இயக்கம் பற்றிய கெப்ளரின் விதிகளை எழுதுக.
- Derive the expression for bending moment. விளைவுத் திருப்புத் திறனை வருவி.

- Derive the expression for Co-efficient of Viscosity.
 பாகியல் எண்ணிற்கான கோவையை வருவி.
- 5. Write the properties and applications of Ultrasonics.

செவியுணரா ஒலிகளின் பண்புகள் மற்றும் பயன்களை எழுதுக.

PART B — (5 × 12 = 60 marks)

Answer ALL questions.

6. (a) Explain direct and oblique impact of two smooth spheres.

இரு வழவழப்பான கோளங்களின் நேர் மோதலை விளக்குக.

Or

(b) Explain the characteristics of the motion of a Projectile.

> எரிபொருள் இயக்கத்தின் சிறப்பியல்புகளை விளக்குக.

7. (a) Explain the Boy's method for G and find expression for the period.

பாய்ஸ் முறை மூலம் *G* காணல் மற்றும் அலைவு நேரம் காண்பதை விளக்குக.

Or

(b) Explain the variation of 'g' with latitude, altitude and depth.

குத்துயரத்தைப் பொறுத்து குறுக்குக் கோடு மற்றும் ஆழத்தைப் பொறுத்து 'g' மாறுபடுவதை விளக்குக.

8. (a) Discuss the uniform and non-uniform bending with theory and experiment.

சீரான மற்றும் சீரற்ற வளைவின் சோதனைகளை விவாதி.

Or

- (b) Discuss the torsional pendulum. முறுக்கு அலைவினை விவாதி.
- (a) Explain the Stoke's method. ஸ்டோக்ஸ் முறையை விளக்குக.

Or

- (b) Explain the Bernouli's theorem. பெர்னொலி தேற்றத்தை விளக்குக.
 - 3

10. (a) Discuss the composition of two SHM.

இரு சீரிசை இயக்கங்களின் தொகுப்பினை விவாதி.

 \mathbf{Or}

4

(b) Explain the determination of Frequency of tuning fork using Melde's experiment.

மெல்டே கருவி மூலம் இசைக்கவையின் அதிர்வெண் காண்க.

UG-346 BPHY-12

B.Sc. DEGREE EXAMINATION — JUNE, 2019.

First Year

Physics

OPTICS AND SPECTROSCOPY

Time : 3 hours

Maximum marks : 75

PART A — $(5 \times 3 = 15 \text{ marks})$

Answer ALL questions.

- 1. Explain how two narrow angled prisms of different dispersive powers may be combined to produce dispersion without deviation.
- 2. Describe the conditions for bright and dark fringes.
- 3. Obtain the expression for the resolving power of a telescope.
- 4. Describe how a Nicol prism can be used as an analyzer.
- 5. Write an essay on IR spectroscopy and mention some of its applications.

PART B — $(5 \times 12 = 60 \text{ marks})$

Answer ALL questions.

6. (a) Explain what is meant by chromatic abenation in lenses. Derive the conditions for a chromatism of thin lenses separated by a distances.

 \mathbf{Or}

- (b) Discuss the importance of an eyepiece in an optical instrument Describe with theory the construction of Huygen eyepieces.
- (a) Explain formation the interference fingers by an air wedge. How can the above method be used to measure the diameter of a thin wire accurately.

Or

- (b) Describe the construction of Michelson's interferometer and explain its working.
- 8. (a) Discuss the theroy of diffraction grating. Describe in detail how you would use a transmission grating to determine the wavelength of light.

Or

- (b) Give the theory and construction of the zone plate.
 - 2 **UG-346**

9. (a) Explain the theory of production and detection of elliptically polarized light.

Or

- (b) Describe the construction and working of Lawrent's half shade polarimeter.
- 10. (a) Explain the following Laser characteristics.
 - (i) induced absorption
 - (ii) spontaneous emission
 - (iii) stimulated emission.

Or

(b) Explain the quantum theory of Raman effect and also write how its different from florescence spectra.

3

UG - 330 BPHYA-01

B.Sc. DEGREE EXAMINATION – JUNE, 2019.

First Year

DIFFERENTIAL EQUATIONS

Time : 3 hours

Maximum marks: 75

PART A — $(5 \times 3 = 15 \text{ marks})$

Answer ALL questions.

1. Solve
$$(x+1)\frac{dy}{dx} + 1 = 2 e^{-y}$$
.

2. Solve: $(D^2 - 4D + 3)y = 0$.

3. Solve the equation
$$\frac{dx}{yz} = \frac{dy}{xz} = \frac{dz}{xy}$$

- 4. Solve the equation p + q = x + y.
- 5. Find $L[t \sin at]$.

PART B — $(5 \times 12 = 60 \text{ marks})$

Answer ALL questions.

6. (a) (i) Solve :
$$x^2 = (1 + p^2)$$

(ii) Solve: $xp^2 - 2yp + x = 0$.

Or

(b) Solve:
$$(px - y)(py - x) = 2p$$

7. (a) Solve:
$$(D^3 - 2D + 4)y = e^x \cos x$$
.

 \mathbf{Or}

(b) Solve:
$$(1-x)y_3 + (x^2-1)y_2 - x^2y_1 + xy = 0$$
.

8. (a) Solve the equation

$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 + y^2}.$$
Or

$$(x^{3} D^{3} + 9x^{2} D^{2} + 18 x D + 6) y = x^{2})$$

2 **UG - 330**

9. (a) Solve (y-z)p + (z-x)q = x - y by Lagrange's method.

(b) Solve
$$\left(\frac{x}{p}\right)^n + \left(\frac{y}{q}\right)^n = z^n$$
.

10. (a) Using Laplace transform, solve the equation

$$\frac{d^2y}{dt^2} + t\frac{dy}{dt} - y = 0 \text{ if } y(0) = 0 \text{ and } y'(0) = 1.$$

Or

(b) Find (i)
$$L[e^{-t}\sin t]$$
 (ii) $L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$.

3

UG – 330