UG-328 BMC-11/ BMS-11

B.Sc. DEGREE EXAMINATION — JUNE, 2019. First Year Mathematics ELEMENTS OF CALCULUS

Time : 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. If $y = e^{a \sin^{-1}x}$ Prove that $(1 x^2)y_{n+2} (2n+1)$ $xy_{n+1} - (n^2 + a^2) = 0$.
- 2. Verify Euler's theorem for $u = ax^2 + 2hxy + by^2$.
- 3. Find the envelope of the family of lines $y = mx + \frac{a}{m}$ where '*a*' is constant.
- 4. Evaluate $\int_{0}^{\pi/2} \sin^9 x \, dx$.

5. Evaluate
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

6. Evaluate $\int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta$.

7. Show that
$$\lim_{n \to \infty} \frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{1}{2}$$

8. Discuss the convergence of the series

$$\Sigma \frac{1}{\sqrt{n^3 + 1}}.$$
SECTION B — (5 × 10 = 50 marks)
Answer any FIVE questions.

•

- 9. If $u = \log(x^2 + y^2 + z^2)$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{x^2 + y^2 + z^2}.$
- 10. Prove that the envelope touches each member of the given family of curves at the corresponding points.
- 11. Derive the reduction formula for $\int \cos^n x \, dx$ and

hence deduce
$$\int_{0}^{\pi/2} \cos^n x \, dx$$
.
2 **UG-328**

- 12. Evaluate the double integral $\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$.
- 13. Let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Show that (a_n) diverges to α .
- 14. State and prove Cauchy's general principle of convergence.
- 15. Discuss the convergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$
- 16. Verify Euler's theorem for the function $u = x^3 + y^3 + z^3 + 3xyz$.

3

UG-328

UG-329 BMS-12/BMC-12

U.G. DEGREE EXAMINATION – JUNE 2019.

First Year

Mathematics with Computer Applications

TRIGONOMETRY, ANALYTICAL GEOMETRY (3D) AND VECTOR CALCULUS

Time : 3 hours

Maximum marks : 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

1. Prove that

 $\cos 8\theta = 1 - 32 \sin^2 \theta + 160 \sin^2 \theta - 256 \sin^6 \theta + 128 \sin^8 \theta.$

- 2. Sum to *n* terms of the series $\sin^3 \alpha + \sin^3 2\alpha + \sin^3 3\alpha + \dots$
- 3. Find the equation of the line passing through (3, 2, -1) and perpendicular to the plane 5x 4y + 7z 1 = 0.

- 4. Find the centre and radius of the sphere $16x^2 + 16y^2 + 16z^2 - 16x - 8y - 16z - 55 = 0$.
- 5. Find the equation of the sphere whose centre is (1, -3, 4) and which passes through the point (3, -1, 3).
- 6. If $\phi = x^2 + y z 1$ find grad ϕ at (1, 0, 0).
- 7. If $u = x^2 + y^2$ prove that $\nabla^2 u = 0$.
- 8. State Stoke's theorem.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

9. Prove that

$$\cos^{6}\theta = \frac{1}{32} \left[\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 \right].$$

- 10. Separate into real and imaginary parts of $\tan (x + iy)$.
- 11. Show that the lines $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$ and 3x-2y-z+5=0, 2x+3y+4z-4=0 are coplanar. Find their point of intersection.
 - 2 UG-329

- 12. Find the image of the line $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-4}{2}$ in the plane 2x y + z + 3 = 0.
- 13. Find the equation of the sphere passing through the points (1, 0, -1), (2, 1, 0), (1, 1, -1) and (1, 1, 1).
- 14. Find divergence and curl of the vector point function $\vec{F} = x z^3 \vec{i} 2x^2 y z \vec{j} + 2 y z^4 \vec{k}$ at the point (1, -1, 1).
- 15. If $\vec{F} = (3x^2 + 6y)\vec{i} 14yz\vec{j} + 20xz^2\vec{k}$ evaluate $\int_C \vec{F} \cdot d\vec{r} \text{ where } C \text{ is the straight line joining}$ (0, 0, 1) to (1, 1, 1).
- 16. Verify Green's theorem in the XY plane for $\int_C \{ (xy + y^2) dx + x^2 dy \}$ where *C* is the closed curve of the region bounded by y = x and $y = x^2$.

3

UG-329

UG-431 BMS-13

B.Sc. DEGREE EXAMINATION – JUNE, 2019.

First Year

Mathematics

DIFFERENTIAL EQUATIONS

Time : 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Solve : $y = xp + p^2$.
- 2. Solve: $(D^2 + 16)y = \cos 4x$.
- 3. Solve: $(x+z)^2 dy + y^2 (dx + dz) = 0$.

4. Solve:
$$x^2 dx + y^2 dy = z(x + y)$$
.

5. Find:
$$L^{-1}\left[\frac{1}{(s-4)^5} + \frac{5}{(s-2)^2 - 5^2} + \frac{s+3}{(s+3)^2 + 6^2}\right].$$

6. Using Laplace transform solve the differential equation $y'' + 4y' + 3y = e^{-t}$ given that y(0) = 1; y'(0) = 0.

- 7. Solve : $z = px + qy + 2\sqrt{pq}$.
- 8. Solve: $(D+1)^2 = e^{-x} \cos x$.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

9. Solve :
$$y = zpz + y^2 p^3$$
.
10. Solve : $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} - 5y = \cos(\log x)$.
11. Solve : $(mz - ny)dx + (nx - lz)dy + (ly - mx)dz = 0$.
12. Use Charpit method to solve $p^2 + q^2 = npq$.
13. (a) Find $L\left[\frac{1 - e^t}{t}\right]$ (b) $L\left[\frac{\cos at}{t}\right]$ does exit. (8 + 2)
14. Find $L^{-1}\left[\frac{s + 3}{(s^2 + 6s + 13)^2}\right]$.
15. Solve $z = px + qy + p^2q^2$.

16. Solve $\frac{d^2y}{dx^2} + y = \sec x$ by method of variation of parameters.

