

TAMIL NADU OPEN UNIVERSITY Chennai - 15 School of Science

HOME / SPOT ASSIGNMENT

Programme Code No Programme Name Batch No.of Assignment

:131 : B.Sc., Mathematics Course Code & Name : BMS-31, Real and Complex Analysis : CY 2018 : One Assignment for Each 2 Credits Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment – I

Answer any one of the question not exceeding 1000 words

- 1. State and prove Holderc inequality and hence deduce Cauchy-Schwarz inequality.
- 2. State equivalent conditions for a subset A our metric space X is dense in X.
- 3. Prove that ℓ_2 is complete, with usual notation.

Assignment – II

Answer any one of the question not exceeding 1000 words

- 1. Prove that \mathbb{R} is connected, proving necessary results.
- 2. Prove that a metric space X is totally bounded if and only if every sequence in X has a Cauchy subsequence.
- 3. State and prove Cantors Intersection Theorem.

Assignment – III

Answer any one of the question not exceeding 1000 words

- 1. State and prove equivalent conditions for a metric space X to be compact.
- 2. List Properties of Riemann integral and prove.
- 3. State and prove first fundamental theorem of Calculus.

Assignment – IV

Answer any one of the question not exceeding 1000 words

- 1. State and prove Cauchy integral theorem for Rectangle.
- 2. State and prove Moreracs theorem.
- 3. State and prove maximum modulus theorem.

TAMIL NADU OPEN UNIVERSITY Chennai - 15 **School of Science**

HOME / SPOT ASSIGNMENT

Programme Code No Programme Name Batch No.of Assignment

:131 : B.Sc., Mathematics Course Code & Name : BMS-32, Linear Algebra and Boolean Algebra : CY 2018 : One Assignment for Each 2 Credits Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment – I

Answer any one of the question not exceeding 1000 words

- 1. Define the quotient Space and prove it is an vector space.
- 2. Prove that the set of all linear transformations from V to W is a vector space where V and W are vector spaces
- 3. Prove that any two bases of a finite dimensional vector space V have the same number of elements, proving necessary results.

Assignment – II

Answer any one of the question not exceeding 1000 words

- 1. State and prove equivalent conditions for a subset of a vector space to be a basis.
- 2 Prove that any vector space of dimension n over a field F is isomorphic to $V_n(F)$.
- 3. Prove that dim W ≤ dim V and dim $\frac{V}{W}$ = dim V. dim W where W is a subspace of a

finite dimensional vector space V.

Assignment – III

Answer any one of the question not exceeding 1000 words

- 1. If A and B are subspaces of a finite-dimensional vector space V, then prove that, dim $(A + B) = \dim A + \dim B$. dim $(A \cap B)$.
- 2. Explain Gram-Schmidt orthogonalisation process and illustrate.
- 3. Explain Lagrange Method to reduce a quadratic form to diagonal form and illustrate.

Assignment – IV

- 1. Write a note on Distributive Lattices.
- 2. Write a note on Modular Lattices.
- Explain the process of converting a Boolean ring with identity element 1 ≠ 0 in to a Boolean algebra.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No: 131Programme Name: B.Sc., MathematicsCourse Code & Name: BMS-33N, Quantitative TechniquesBatch: CY 2018No.of Assignment: One Assignment for Each 2 CreditsMaximum Marks: 25 (Average of Total No. of Assignment)

Assignment – I

Answer any one of the question not exceeding 1000 words.

- 1. Use Charne's penalty method to Minimize $Z = 2x_1 + x_2$ Subject to the constraints: $3x_1 + x_2 = 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \le 3$ $x_1, x_2 \ge 0$
- 2. Use two-phase simplex method to Minimize $Z = \frac{15}{2}x_1 - 3x_2$ Subject to the constraints: $3x_1 - x_2 - x_3 \ge 3$ $x_1 - x_2 + x_3 \ge 2$ $x_1, x_2, x_3 \ge 0$
- 3. Use simplex method to solve the following L.P.P. Maximize $Z = 7x_1 + 5x_2$ Subject to the constraints:

$$\left.\begin{array}{c} x_1 + 2x_2 \leq 6 \\ 4x_1 + 3x_2 \leq \\ x_1, x_2 \geq 0 \end{array}\right\}$$

Assignment – II

Answer any one of the question not exceeding 1000 words.

1. Use the duality to solve the following L.P.P.:

Maximize $Z = 2x_1 + x_2$

Subject to the constraints:

 $x_{1} + 2x_{2} \leq 10$ $x_{1} + x_{2} \leq 6$ $x_{1} - x_{2} \leq 2$ $x_{1} - 2x_{2} \leq 1$ $x_{1}, x_{2}, x_{3} \geq 0$

2. Find the optimum integer solution to the following all I.P.P.:

Maximize $Z = x_1 + 2x_2$ Subject to the constraints : $x_1 + x_2 \le 7$ $2x_1 \le 11$ $2x_2 \le 7$ $x_1, x_2 \ge 0$ and are integers. 3. Maximize $Z = \frac{3}{4}x_1$. $150x_2 + \frac{1}{50}x_3$. $6x_4$ Subject to the co

Subject to the constraints: $\frac{1}{4}x_1 \cdot 60x_2 - \frac{1}{25}x_3 + 9x_4 \le 0$ $\frac{1}{2}x_1 \cdot 90x_2 - \frac{1}{50}x_3 + 3x_4 \le 0$ $x_3 \le 1$ $x_1, x_2, x_3, x_4 \ge 0$

Page **6** of **10**

Assignment – III

Answer any one of the question not exceeding 1000 words.

1. Use dual simplex method to solve the L.P.P.

Minimize
$$Z = x_1 + 2x_2 + 3x_3$$

subject to the constraints:

$$x_1 . x_2 + x_3 ≥ 4$$

$$x_1 + x_2 + 2x_3 ≤ 8$$

$$x_2 . x_3 ≥ 2$$

$$x_1, x_2, x_3 ≥ 0$$

2. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows:

Dorsons			Job		
Persons	1	2	3	4	5
				_	
A	8	4	2	6	1
В	0	9	5	5	4
С	3	8	9	2	6
D	4	3	1	0	3
E	9	5	8	9	5

Determine the optimum assignment schedule.

3. Obtain an initial basic feasible solution to the following T.P. using the

Vogelos approximation method:

	Stores				
Warehouses	Ι	II	III	IV	Availability
А	5	1	3	3	34
В	3	3	5	4	15
С	6	4	4	3	12
D	4	-1	4	2	19

Page **7** of **10**

Requirement	21	25	17	17	80
	Assi	gnm	ent	– IV	

Answer any one of the question not exceeding 1000 words.

1. Solve the following 3 x 3 game by linear programming:

Player B

Player A
$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{bmatrix}$$

- 2. Explain EOQ model without shortage.
- 3. Explain (M/M/1): (@/FIFO) model.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15 School of Science

HOME / SPOT ASSIGNMENT

Programme Code No	: 131
Programme Name	: B.Sc., Mathematics
Course Code & Name	: BMS-34, Programming in C and C++
Batch	: CY 2018
No.of Assignment	: One Assignment for Each 2 Credits
Maximum CIA Marks	: 25 (Average of Total No. of Assignment)

Assignment – I

Answer any one of the question not exceeding 1000 words.

- 1. Explain Control statements available in C.
- 2. Write a note on a) Polymorphism b) Function overloading
- 3. Write a note on Storage Class.

Assignment – II

Answer any one of the question not exceeding 1000 words.

- 1 Explain User defined functions in C.
- 2. Write a note on Structures and unions in C.
- 3. Write a note on Arrays in C.

TAMIL NADU OPEN UNIVERSITY Chennai - 15 School of Science

HOME / SPOT ASSIGNMENT

Programme Code No Programme Name Batch No.of Assignment

:131 : B.Sc., Mathematics Course Code & Name : BMS-35, Graph Theory : CY 2018 : One Assignment for Each 2 Credits Maximum CIA Marks : 25 (Average of Total No. of Assignment)

Assignment – I

Answer any one of the question not exceeding 1000 words.

- 1. State and prove equivalent condition for a graph to be a tree.
- 2. State and prove Haval and Hakimi theorem and illustrate.
- 3. Define an Eulerian graph, give an example and a counter example. Also prove that a connected graph G is eulerian if and only if each vertex of G has even degree.

Assignment – II

Answer any one of the question not exceeding 1000 words.

- Define closure of a graph, illustrate and prove that closure of a graph is well defined. 1. Also prove that if c(G) is complete, then G is hamiltonian when $p \ge 3$.
- 2. Write a note on Chromatic Polynomial of a graph.
- 3. State and prove Five-colour theorem, proving necessary result.